
Dr.SNS Rajalakshmi College of Arts and Science

(Autonomous)

Coimbatore-49

Department of Computer Applications

Oops- Unit –III Notes

Classes, Objects and Inheritance

Prepared By

Dr.A.Devi

Associate Professor

DRSNSRCAS

Classes and Objects in JAVA

Example: Java Class and Objects

class Lamp

{

 boolean isOn;

 void turnOn() {

 isOn = true;

 System.out.println("Light on? " + isOn);

 }

 void turnOff() {

 isOn = false;

 System.out.println("Light on? " + isOn);

 }

}

class Main {

 public static void main(String[] args) {

 Lamp led = new Lamp();

 Lamp halogen = new Lamp();

 led.turnOn();

 halogen.turnOff();

 }

}

Run Code

Output:

Light on? true

Light on? false

In the above program, we have created a class named Lamp. It contains a

variable: isOn and two methods: turnOn() and turnOff().

Inside the Main class, we have created two objects: led and halogen of

the Lamp class. We then used the objects to call the methods of the class.

 led.turnOn() - It sets the isOn variable to true and prints the output.

 halogen.turnOff() - It sets the isOn variable to false and prints the output.

The variable isOn defined inside the class is also called an instance variable. It is

because when we create an object of the class, it is called an instance of the class.

And, each instance will have its own copy of the variable.

That is, led and halogen objects will have their own copy of the isOn variable.

https://www.programiz.com/java-programming/online-compiler

2. What is Strings in JAVA

Java String

In Java, string is basically an object that represents sequence of char values.

An array of characters works same as Java string. For example:

1. char[] ch={'j','a','v','a','t','p','o','i','n','t'};

2. String s=new String(ch);

is same as:

1. String s="javatpoint";

Java String class provides a lot of methods to perform operations on strings such

as compare(), concat(), equals(), split(), length(), replace(), compareTo(),

intern(), substring() etc.

The java.lang.String class

implements Serializable, Comparable and CharSequence interfaces.

https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/array-in-java
https://www.javatpoint.com/interface-in-java

CharSequence Interface

The CharSequence interface is used to represent the sequence of characters.

String, StringBuffer and StringBuilder classes implement it. It means, we can

create strings in Java by using these three classes.

The Java String is immutable which means it cannot be changed. Whenever we

change any string, a new instance is created. For mutable strings, you can use

StringBuffer and StringBuilder classes.

We will discuss immutable string later. Let's first understand what String in Java

is and how to create the String object.

https://www.javatpoint.com/StringBuffer-class
https://www.javatpoint.com/StringBuilder-class

What is String in Java?

Generally, String is a sequence of characters. But in Java, string is an object that

represents a sequence of characters. The java.lang.String class is used to create a

string object.

How to create a string object?

There are two ways to create String object:

1. By string literal

2. By new keyword

1) String Literal

Java String literal is created by using double quotes. For Example:

1. String s="welcome";

Each time you create a string literal, the JVM checks the "string constant pool"

first. If the string already exists in the pool, a reference to the pooled instance is

returned. If the string doesn't exist in the pool, a new string instance is created

and placed in the pool. For example:

1. String s1="Welcome";

2. String s2="Welcome";//It doesn't create a new instance

In the above example, only one object will be created. Firstly, JVM will not find

any string object with the value "Welcome" in string constant pool that is why it

will create a new object. After that it will find the string with the value "Welcome"

in the pool, it will not create a new object but will return the reference to the same

instance.

Why Java uses the concept of String literal?

To make Java more memory efficient (because no new objects are created if it

exists already in the string constant pool).

2) By new keyword

1. String s=new String("Welcome");//creates two objects and one reference variabl

e

In such case, JVM will create a new string object in normal (non-pool) heap

memory, and the literal "Welcome" will be placed in the string constant pool. The

variable s will refer to the object in a heap (non-pool).

Java String Example

StringExample.java

1. public class StringExample{

2. public static void main(String args[]){

3. String s1="java";//creating string by Java string literal

4. char ch[]={'s','t','r','i','n','g','s'};

5. String s2=new String(ch);//converting char array to string

6. String s3=new String("example");//creating Java string by new keyword

7. System.out.println(s1);

8. System.out.println(s2);

9. System.out.println(s3);

10. }}

Output:

java

strings

example

The above code, converts a char array into a String object. And displays the

String objects s1, s2, and s3 on console using println() method.

https://www.javatpoint.com/jvm-java-virtual-machine

3. What is Inheritance and its type

Inheritance in Java

Inheritance in Java is a mechanism in which one object acquires all the

properties and behaviors of a parent object. It is an important part of OOPs

(Object Oriented programming system).

The idea behind inheritance in Java is that you can create new classes

that are built upon existing classes. When you inherit from an existing class, you

can reuse methods and fields of the parent class. Moreover, you can add new

methods and fields in your current class also.

Inheritance represents the IS-A relationship which is also known as a parent-

child relationship

Why use inheritance in java

o For Method Overriding (so runtime polymorphism can be achieved).

o For Code Reusability.

Terms used in Inheritance

o Class: A class is a group of objects which have common properties. It is a

template or blueprint from which objects are created.

o Sub Class/Child Class: Subclass is a class which inherits the other class.

It is also called a derived class, extended class, or child class.

o Super Class/Parent Class: Superclass is the class from where a subclass

inherits the features. It is also called a base class or a parent class.

o Reusability: As the name specifies, reusability is a mechanism which

facilitates you to reuse the fields and methods of the existing class when

you create a new class. You can use the same fields and methods already

defined in the previous class.

https://www.javatpoint.com/java-oops-concepts
https://www.javatpoint.com/java-oops-concepts
https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/method-overriding-in-java
https://www.javatpoint.com/runtime-polymorphism-in-java

The syntax of Java Inheritance

1. class Subclass-name extends Superclass-name

2. {

3. //methods and fields

4. }

The extends keyword indicates that you are making a new class that derives from

an existing class. The meaning of "extends" is to increase the functionality.

In the terminology of Java, a class which is inherited is called a parent or

superclass, and the new class is called child or subclass.

As displayed in the above figure, Programmer is the subclass and Employee is

the superclass. The relationship between the two classes is Programmer IS-A

Employee. It means that Programmer is a type of Employee.

1. class Employee{

2. float salary=40000;

3. }

https://www.javatpoint.com/inheritance-in-java
https://www.javatpoint.com/inheritance-in-java
https://www.javatpoint.com/inheritance-in-java
https://www.javatpoint.com/inheritance-in-java
https://www.javatpoint.com/inheritance-in-java
https://www.javatpoint.com/inheritance-in-java

4. class Programmer extends Employee{

5. int bonus=10000;

6. public static void main(String args[]){

7. Programmer p=new Programmer();

8. System.out.println("Programmer salary is:"+p.salary);

9. System.out.println("Bonus of Programmer is:"+p.bonus);

10. }

11. }

Programmer salary is:40000.0

 Bonus of programmer is:10000

In the above example, Programmer object can access the field of own class as

well as of Employee class i.e. code reusability.

Types of inheritance in java

On the basis of class, there can be three types of inheritance in java: single,

multilevel and hierarchical.

In java programming, multiple and hybrid inheritance is supported

through interface only. We will learn about interfaces later.

Note: Multiple inheritance is not supported in Java through class.

When one class inherits multiple classes, it is known as multiple inheritance. For

Example:

4. Where to use Interfaces in JAVA?

Example 1: Java Interface

interface Polygon {

 void getArea(int length, int breadth);

}

// implement the Polygon interface

class Rectangle implements Polygon {

 // implementation of abstract method

 public void getArea(int length, int breadth) {

 System.out.println("The area of the rectangle is " + (length * breadth));

 }

}

class Main {

 public static void main(String[] args) {

 Rectangle r1 = new Rectangle();

 r1.getArea(5, 6);

 }

}

Run Code

Output

The area of the rectangle is 30

5. List the Regular Expressions

Regular Expressions or Regex (in short) in Java is an API for defining String

patterns that can be used for searching, manipulating, and editing a string in

Java. Email validation and passwords are a few areas of strings where Regex is

widely used to define the constraints. Regular Expressions are provided

under java.util.regex package. This consists of 3 classes and 1 interface.

https://www.programiz.com/java-programming/online-compiler

The java.util.regex package primarily consists of the following three classes as

depicted below in tabular format as follows:

S.

No.

Class/Interface Description

1. Pattern Class Used for defining patterns

2. Matcher Class Used for performing match operations on

text using patterns

3. PatternSyntaxException

Class

Used for indicating syntax error in a

regular expression pattern

4. MatchResult Interface Used for representing the result of a match

operation

Regex in java provides us with 3 classes and 1 interface listed below as

follows:

1. Pattern Class

2. Matcher Class

3. PatternSyntaxException Class

4. MatchResult Interface

6. Relate on Polymorphism

7. What is Polymorphism and Interfaces in JAVA

Java language is one of the most popular languages among all programming

languages. There are several advantages of using the java programming language,

whether for security purposes or building large distribution projects. One of the

advantages of using JA is that Java tries to connect every concept in the language

to the real world with the help of the concepts of classes, inheritance,

polymorphism, interfaces, etc. In this article, we will discuss polymorphism and

interface concepts.

Polymorphism is that it has many forms that mean one specific defined form is

used in many different ways. The simplest real-life example is let’s suppose we

have to store the name of the person and the phone number of the person, but

there are many situations when a person has two different phone numbers. We

have to save the same phone number under the same name.

Let us interpret it with help . So, in java, the problem can be solved using

an object-oriented concept, void insertPhone(String name, int phone). So, this

method is used to save the phone number of the particular person. Similarly, we

can use the same form but a different signature means different parameters to

store the alternative phone number of the person’s void insertPhone(String

name, int phone1, int phone2). One method has two different forms and

performs different operations. This is an example of polymorphism, which is

method overloading.

Types of polymorphism in Java:

1. Run time polymorphism

2. Compile-time polymorphism

Type 1: Run time polymorphism

This type of polymorphism is resolved by the java virtual machine, not by the

java compiler. That’s why this type of polymorphism is called run-time

polymorphism. Run time polymorphism occurs during method overriding in java.

Example

https://www.geeksforgeeks.org/object-oriented-programming-oops-concept-in-java/
https://www.geeksforgeeks.org/difference-between-compile-time-and-run-time-polymorphism-in-java/

import java.io.*;

class GFG1 {

 void name() {

 System.out.println("This is the GFG1 class");

 }

}

public class GFG extends GFG1 {

 void name() {

 System.out.println("This is the GFG class");

 }

 public static void main(String[] args) {

 GFG1 ob = new GFG1();

 ob.name();

 GFG1 ob1 = new GFG();

 ob1.name();

 }

}

Output

This is the GFG1 class

This is the GFG class

Output explanation:

In the above example, the same function i.e name is called two times, but in both

cases, the output is different. The signatures of these methods are also the same.

That’s why compilers cannot be able to identify which should be executed. This

is determined only after the object creation and reference of the class, which is

performed during run time (Memory management). That’s why this is run-time

polymorphism.

Type 2: Compile-time polymorphism

Method overloading is an example of the compile-time polymorphism method.

Overloading means a function having the same name but a different signature.

This is compile-time polymorphism because this type of polymorphism is

determined during the compilation time because during writing the code we

already mention the different types of parameters for the same function name.

Example:

import java.io.*;

import java.util.*;

 class First {

 void check()

 {

 System.out.println("This is the class First");

 }

}

 class Second extends First {

 void check(String name)

 {

 System.out.println("This is the class " + name);

 }

 public static void main(String args[])

 {

 Second ob = new Second();

 ob.check("Second");

 First ob1 = new First();

 ob.check();

 First ob2 = new Second();

 ob.check();

 }

}

Output

This is the class Second

This is the class First

This is the class First

Interfaces are very similar to classes. They have variables and methods but the

interfaces allow only abstract methods(that don’t contain the body of the

methods), but what is the difference between the classes and the interfaces? The

first advantage is to allow interfaces to implement the multiple inheritances in a

particular class. The JAVA language doesn’t support multiple inheritances if we

extend multiple classes in the class, but with the help of the interfaces, multiple

inheritances are allowed in Java.

Real-life Example

The real-world example of interfaces is that we have multiple classes for different

levels of employees working in a particular company and the necessary property

of the class is the salary of the employees and this. We must be implemented in

every class and. Also, it is different for every employee here. The concept of the

interface is used. We simply create an interface containing an abstract salary

method and implement it in all the classes and we can easily define different

salaries of the employees.

Example:

https://www.geeksforgeeks.org/interfaces-in-java/

interface salary {

 void insertsalary(int salary);

}

class SDE1 implements salary {

 int salary;

 @Override public void insertsalary(int salary)

 {

 this.salary = salary;

 }

 void printSalary() { System.out.println(this.salary); }

}

class SDE2 implements salary {

 int salary;

 @Override public void insertsalary(int salary)

 {

 this.salary = salary;

 }

 void printSalary() { System.out.println(this.salary); }

}

public class GFG {

 public static void main(String[] args)

 {

 SDE1 ob = new SDE1();

 ob.insertsalary(100000);

 ob.printSalary();

 SDE2 ob1 = new SDE2();

 ob1.insertsalary(200000);

 ob1.printSalary();

 }

}

Output

100000

200000

8. Differentiate Classes and Objects in C++ and JAVA

9. Define the Inheritance and its types

Inheritance can be implemented in 5 ways and below are types that comes

from OOPS concepts.

1) Single Inheritance

2) Multi-Level Inheritance

3) Multiple Inheritance

4) Hierarchical Inheritance

5) Hybrid Inheritance

Single Inheritance:

This is very easy to understand. If a class extends only one class then it is called

as Single Inheritance. Look at the below diagram where class B extends class

A.

Here always only one base class and one child class.

public class SingleInheritance {

 public static void main(String[] args) {

 A a = new A();

 a.printA();

 B b = new B();

 b.printA();

 b.printB();

 }

}

class A {

 public void printA() {

 System.out.println("PrintA method.");

 }

}

class B extends A {

 public void printB() {

 System.out.println("PrintB method.");

 }

}

Output:

https://4.bp.blogspot.com/-FHpExbRyjfU/WhR4ui_xVRI/AAAAAAAAA5k/9XZbTZHUZUk6sJKfHdnP4wIlKkMVteStQCLcBGAs/s1600/Single_Inheritance.png

PrintA method.

PrintA method.

PrintB method.

Through object A, we can call only class A methods. But, both methods can

be invoked using B object. Because class B is inheriting class A properties

and methods.

Multi-Level Inheritance:

If a class is derived from another child or derived class is said to be "Multi-

Level Inheritance". Derived class means a child class.

This can be minimum of three or more classes involve in this type of inheritance.

For example, class B inherits class A and class C inherits class B.

package blog.java.w3schools.inheritance;

https://1.bp.blogspot.com/-TjTUvTGTunk/WhR5M19plUI/AAAAAAAAA5o/qcHF-hvnVpkYAqPZUTprt1mJI4GXUz6NACLcBGAs/s1600/Multi_Level_Inheritance.jpg

public class MultiLevelInheritance {

 public static void main(String[] args) {

 C c = new C();

 c.printA();

 c.printB();

 c.printC();

 }

}

class A {

 public void printA() {

 System.out.println("PrintA method.");

 }

}

class B extends A {

 public void printB() {

 System.out.println("PrintB method.");

 }

}

class C extends B {

 public void printC() {

 System.out.println("PrintC method.");

 }

}

Output:

PrintA method.

PrintB method.

PrintC method.

Observe carefully, all three methods can be invoked by object c. This is the power

of inheritance.

4.3 Multiple Inheritance:

Multiple Inheritance is when one class inherits multiple classes at a

time. Basically, Java does not support Multiple Inheritance.

This is not much implemented any real time projects and not supported in many

OO programming languages such as Small Talk, Java, C# do not support Multiple

inheritance. Only one language supports Multiple Inheritance is C++.

The main problem is that if both parent classes have a same method then child

class which method of parent class will be accessed. This makes ambiguity to the

compiler and leads to diamond problem. To avoid all these circumstances, java

not supporting it.

4.4 Hierarchical Inheritance:

In simple terms, one base class - multiple child classes. A base class is

inherited by many classes(child). Take a look at the below diagram.

https://3.bp.blogspot.com/-Sloc9Mud67k/WhR5w3K27mI/AAAAAAAAA5w/s67A594v_eMxGjkwfyFhrRvjSq2-fJslACLcBGAs/s1600/Multiple_Inheritance.png

Class A is a base class.

Class B inherits class A

Class C inherits class A

Class D inherits class A

class B, C, D are inherited class A.

package blog.java.w3schools.inheritance;

public class HierarchicalInheritance {

 public static void main(String[] args) {

 B b = new B();

 b.printA();

 b.printB();

 System.out.println("--------------");

 C c = new C();

 c.printA();

 c.printC();

 System.out.println("--------------");

 D d = new D();

https://3.bp.blogspot.com/-e3N-a3CV7hk/WhR596RGb5I/AAAAAAAAA50/bF29CKTXGA4G3UPDXef5kdZfC_6XIa2IwCLcBGAs/s1600/Hierarchical_Inheritance.jpg

 c.printA();

 c.printC();

 }

}

class A {

 public void printA() {

 System.out.println("PrintA method.");

 }

}

class B extends A {

 public void printB() {

 System.out.println("PrintB method.");

 }

}

class C extends A {

 public void printC() {

 System.out.println("PrintC method.");

 }

}

class D extends A {

 public void printD() {

 System.out.println("PrintD method.");

 }

}

Output:

PrintA method.

PrintB method.

PrintA method.

PrintC method.

PrintA method.

PrintC method.

Class B, C, D objects are able to call class A method directly without creating

object for class A.

4.5 Hybrid Inheritance:

Hybrid Inheritance is combination of any two or more inheritances together.

It may be single and multi level inheritance or multi-level or Hierarchical

inheritance.

In this combination, we should not use multiple inheritance which is not

supported by Java.

https://2.bp.blogspot.com/-9C-bUfnhdyk/WhR6fntqvqI/AAAAAAAAA58/qxviHQQXLjALzSmJ665nVe9GcYwarSPzQCLcBGAs/s1600/Hybrid_Inheritance.jpg

10. What is Packages in JAVA

https://2.bp.blogspot.com/-NxVFJf4Pij8/WhR6fmzLjCI/AAAAAAAAA6A/LCM5XNuqYpc5pqC3XuKgRfcC1BVWuBEFgCLcBGAs/s1600/Hierarchical_Inheritance.jpg

11. Discuss in detail the Exception Handling.

Java Exception Handling

In the tutorial, we will learn about different approaches of exception handling in

Java with the help of examples.

In the last tutorial, we learned about Java exceptions. We know that exceptions

abnormally terminate the execution of a program.

https://www.programiz.com/java-programming/exceptions

This is why it is important to handle exceptions. Here's a list of different

approaches to handle exceptions in Java.

 try...catch block

 finally block

 throw and throws keyword

1. Java try...catch block

The try-catch block is used to handle exceptions in Java. Here's the syntax

of try...catch block:

try {

 // code

}

catch(Exception e) {

 // code

}

Here, we have placed the code that might generate an exception inside

the try block. Every try block is followed by a catch block.

When an exception occurs, it is caught by the catch block. The catch block

cannot be used without the try block.

Example: Exception handling using try...catch

class Main {

 public static void main(String[] args) {

https://www.programiz.com/java-programming/try-catch

 try {

 // code that generate exception

 int divideByZero = 5 / 0;

 System.out.println("Rest of code in try block");

 }

 catch (ArithmeticException e) {

 System.out.println("ArithmeticException => " + e.getMessage());

 }

 }

}

Run Code

Output

ArithmeticException => / by zero

In the example, we are trying to divide a number by 0. Here, this code generates

an exception.

To handle the exception, we have put the code, 5 / 0 inside the try block. Now

when an exception occurs, the rest of the code inside the try block is skipped.

The catch block catches the exception and statements inside the catch block is

executed.

If none of the statements in the try block generates an exception, the catch block

is skipped.

https://www.programiz.com/java-programming/online-compiler

2. Java finally block

In Java, the finally block is always executed no matter whether there is an

exception or not.

The finally block is optional. And, for each try block, there can be only

one finally block.

The basic syntax of finally block is:

try {

 //code

}

catch (ExceptionType1 e1) {

 // catch block

}

finally {

 // finally block always executes

}

If an exception occurs, the finally block is executed after the try...catch block.

Otherwise, it is executed after the try block. For each try block, there can be only

one finally block.

Example: Java Exception Handling using finally block

class Main {

 public static void main(String[] args) {

 try {

 // code that generates exception

 int divideByZero = 5 / 0;

 }

 catch (ArithmeticException e) {

 System.out.println("ArithmeticException => " + e.getMessage());

 }

 finally {

 System.out.println("This is the finally block");

 }

 }

}

Run Code

Output

ArithmeticException => / by zero

This is the finally block

In the above example, we are dividing a number by 0 inside the try block. Here,

this code generates an ArithmeticException.

The exception is caught by the catch block. And, then the finally block is

executed.

Note: It is a good practice to use the finally block. It is because it can include

important cleanup codes like,

 code that might be accidentally skipped by return, continue or break

 closing a file or connection

https://www.programiz.com/java-programming/online-compiler

3. Java throw and throws keyword

The Java throw keyword is used to explicitly throw a single exception.

When we throw an exception, the flow of the program moves from the try block

to the catch block.

Example: Exception handling using Java throw

class Main {

 public static void divideByZero() {

 // throw an exception

 throw new ArithmeticException("Trying to divide by 0");

 }

 public static void main(String[] args) {

 divideByZero();

 }

}

Run Code

Output

Exception in thread "main" java.lang.ArithmeticException: Trying to divide by 0

 at Main.divideByZero(Main.java:5)

 at Main.main(Main.java:9)

In the above example, we are explicitly throwing the ArithmeticException using

the throw keyword.

Similarly, the throws keyword is used to declare the type of exceptions that might

occur within the method. It is used in the method declaration.

https://www.programiz.com/java-programming/online-compiler

Example: Java throws keyword

import java.io.*;

class Main {

 // declareing the type of exception

 public static void findFile() throws IOException {

 // code that may generate IOException

 File newFile = new File("test.txt");

 FileInputStream stream = new FileInputStream(newFile);

 }

 public static void main(String[] args) {

 try {

 findFile();

 }

 catch (IOException e) {

 System.out.println(e);

 }

 }

}

Run Code

Output

java.io.FileNotFoundException: test.txt (The system cannot find the file

specified)

https://www.programiz.com/java-programming/online-compiler

When we run this program, if the file test.txt does not

exist, FileInputStream throws a FileNotFoundException which extends

the IOException class.

The findFile() method specifies that an IOException can be thrown.

The main() method calls this method and handles the exception if it is thrown.

If a method does not handle exceptions, the type of exceptions that may occur

within it must be specified in the throws clause.

12. Summarize the JAVA Structure

Structure of Java Program

Java is an object-oriented programming

, platform-independent, and secure programming language that makes it

popular. Using the Java programming language, we can develop a wide variety

of applications. So, before diving in depth, it is necessary to understand the basic

structure of Java program in detail. In this section, we have discussed the

basic structure of a Java program. At the end of this section, you will able to

develop the Hello world Java program

, easily.

https://www.javatpoint.com/java-oops-concepts
https://www.javatpoint.com/java-oops-concepts
https://www.javatpoint.com/simple-program-of-java
https://www.javatpoint.com/simple-program-of-java

Let's see which elements are included in the structure of a Java program

. A typical structure of a Java

program contains the following elements:

o Documentation Section

o Package Declaration

o Import Statements

o Interface Section

o Class Definition

o Class Variables and Variables

o Main Method Class

o Methods and Behaviors

https://www.javatpoint.com/java-programs
https://www.javatpoint.com/java-programs
https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/java-tutorial

Documentation Section

The documentation section is an important section but optional for a Java

program. It includes basic information about a Java program. The information

includes the author's name, date of creation, version, program name,

company name, and description of the program. It improves the readability of

the program. Whatever we write in the documentation section, the Java compiler

ignores the statements during the execution of the program. To write the

statements in the documentation section, we use comments. The comments may

be single-line, multi-line, and documentation comments.

o Single-line Comment: It starts with a pair of forwarding slash (//). For

example:

1. //First Java Program

o Multi-line Comment: It starts with a /* and ends with */. We write

between these two symbols. For example:

1. /*It is an example of

2. multiline comment*/

o Documentation Comment: It starts with the delimiter (/**) and ends

with */. For example:

1. /**It is an example of documentation comment*/

Package Declaration

The package declaration is optional. It is placed just after the documentation

section. In this section, we declare the package name in which the class is placed.

Note that there can be only one package statement in a Java program. It must be

defined before any class and interface declaration. It is necessary because a Java

class can be placed in different packages and directories based on the module they

are used. For all these classes package belongs to a single parent directory. We

use the keyword package to declare the package name. For example:

Competitive questions on Structures in HindiKeep Watching

1. package javatpoint; //where javatpoint is the package name

2. package com.javatpoint; //where com is the root directory and javatpoint is the

subdirectory

Import Statements

The package contains the many predefined classes and interfaces. If we want to

use any class of a particular package, we need to import that class. The import

statement represents the class stored in the other package. We use

the import keyword to import the class. It is written before the class declaration

and after the package statement. We use the import statement in two ways, either

import a specific class or import all classes of a particular package. In a Java

program, we can use multiple import statements. For example:

1. import java.util.Scanner; //it imports the Scanner class only

2. import java.util.*; //it imports all the class of the java.util package

Interface Section

It is an optional section. We can create an interface in this section if required.

We use the interface keyword to create an interface. An interface

https://www.javatpoint.com/structure-of-java-program
https://www.javatpoint.com/structure-of-java-program
https://www.javatpoint.com/structure-of-java-program
https://www.javatpoint.com/structure-of-java-program
https://www.javatpoint.com/structure-of-java-program
https://www.javatpoint.com/structure-of-java-program
https://www.javatpoint.com/interface-in-java

is a slightly different from the class. It contains

only constants and method declarations. Another difference is that it cannot be

instantiated. We can use interface in classes by using the implements keyword.

An interface can also be used with other interfaces by using the extends keyword.

For example:

1. interface car

2. {

3. void start();

4. void stop();

5. }

Class Definition

In this section, we define the class. It is vital part of a Java program. Without

the class

, we cannot create any Java program. A Java program may conation more than

one class definition. We use the class keyword to define the class. The class is a

blueprint of a Java program. It contains information about user-defined methods,

variables, and constants. Every Java program has at least one class that contains

the main() method. For example:

1. class Student //class definition

2. {

3. }

Class Variables and Constants

In this section, we define variables

and constants that are to be used later in the program. In a Java program, the

variables and constants are defined just after the class definition. The variables

https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/java-variables
https://www.javatpoint.com/java-variables

and constants store values of the parameters. It is used during the execution of the

program. We can also decide and define the scope of variables by using the

modifiers. It defines the life of the variables. For example:

1. class Student //class definition

2. {

3. String sname; //variable

4. int id;

5. double percentage;

6. }

Main Method Class

In this section, we define the main() method. It is essential for all Java programs.

Because the execution of all Java programs starts from the main() method. In

other words, it is an entry point of the class. It must be inside the class. Inside the

main method, we create objects and call the methods. We use the following

statement to define the main() method:

1. public static void main(String args[])

2. {

3. }

For example:

1. public class Student //class definition

2. {

3. public static void main(String args[])

4. {

5. //statements

6. }

7. }

You can read more about the Java main() method here

Methods and behavior

In this section, we define the functionality of the program by using the methods

. The methods are the set of instructions that we want to perform. These

instructions execute at runtime and perform the specified task. For example:

1. public class Demo //class definition

2. {

3. public static void main(String args[])

4. {

5. void display()

6. {

7. System.out.println("Welcome to java");

8. }

9. //statements

10. }

11. }

https://www.javatpoint.com/java-main-method
https://www.javatpoint.com/java-main-method
https://www.javatpoint.com/method-in-java
https://www.javatpoint.com/method-in-java

13. How to add Interfaces to your JAVA Program?

In the last tutorial we discussed abstract class which is used for achieving partial

abstraction. Unlike abstract class an interface is used for full abstraction.

Abstraction is a process where you show only “relevant” data and “hide”

unnecessary details of an object from the user(See: Abstraction). In this guide,

we will cover what is an interface in java, why we use it and what are rules that

we must follow while using interfaces in Java Programming.

What is an interface in Java?

Interface looks like a class but it is not a class. An interface can have methods

and variables just like the class but the methods declared in interface are by

default abstract (only method signature, no body, see: Java abstract method).

Also, the variables declared in an interface are public, static & final by default.

We will cover this in detail, later in this guide.

https://beginnersbook.com/2013/05/java-abstract-class-method/
https://beginnersbook.com/2013/03/oops-in-java-encapsulation-inheritance-polymorphism-abstraction/
https://beginnersbook.com/java-tutorial-for-beginners-with-examples/
https://beginnersbook.com/2014/01/abstract-method-with-examples-in-java/

What is the use of interface in Java?

As mentioned above they are used for full abstraction. Since methods in interfaces

do not have body, they have to be implemented by the class before you can access

them. The class that implements interface must implement all the methods of that

interface. Also, java programming language does not allow you to extend more

than one class, However you can implement more than one interfaces in your

class.

Syntax:

Interfaces are declared by specifying a keyword “interface”. E.g.:

interface MyInterface

{

 /* All the methods are public abstract by default

 * As you see they have no body

 */

 public void method1();

 public void method2();

}

Example of an Interface in Java

This is how a class implements an interface. It has to provide the body of all the

methods that are declared in interface or in other words you can say that class has

to implement all the methods of interface.

Do you know? class implements interface but an interface extends another

interface.

interface MyInterface

{

 /* compiler will treat them as:

 * public abstract void method1();

 * public abstract void method2();

 */

 public void method1();

 public void method2();

}

class Demo implements MyInterface

{

 /* This class must have to implement both the abstract methods

 * else you will get compilation error

 */

 public void method1()

 {

 System.out.println("implementation of method1");

 }

 public void method2()

 {

 System.out.println("implementation of method2");

 }

 public static void main(String arg[])

 {

 MyInterface obj = new Demo();

 obj.method1();

 }

}

Output:

implementation of method1

14. Describe about designing tools in multimedia

15. Discuss about Exception Handling in JAVA

Java Exception Handling

In the tutorial, we will learn about different approaches of exception handling in

Java with the help of examples.

In the last tutorial, we learned about Java exceptions. We know that exceptions

abnormally terminate the execution of a program.

This is why it is important to handle exceptions. Here's a list of different

approaches to handle exceptions in Java.

 try...catch block

 finally block

 throw and throws keyword

1. Java try...catch block

https://www.programiz.com/java-programming/exceptions

The try-catch block is used to handle exceptions in Java. Here's the syntax

of try...catch block:

try {

 // code

}

catch(Exception e) {

 // code

}

Here, we have placed the code that might generate an exception inside

the try block. Every try block is followed by a catch block.

When an exception occurs, it is caught by the catch block. The catch block

cannot be used without the try block.

Example: Exception handling using try...catch

class Main {

 public static void main(String[] args) {

 try {

 // code that generate exception

 int divideByZero = 5 / 0;

 System.out.println("Rest of code in try block");

 }

 catch (ArithmeticException e) {

 System.out.println("ArithmeticException => " + e.getMessage());

 }

 }

https://www.programiz.com/java-programming/try-catch

}

Run Code

Output

ArithmeticException => / by zero

In the example, we are trying to divide a number by 0. Here, this code generates

an exception.

To handle the exception, we have put the code, 5 / 0 inside the try block. Now

when an exception occurs, the rest of the code inside the try block is skipped.

The catch block catches the exception and statements inside the catch block is

executed.

If none of the statements in the try block generates an exception, the catch block

is skipped.

2. Java finally block

In Java, the finally block is always executed no matter whether there is an

exception or not.

The finally block is optional. And, for each try block, there can be only

one finally block.

The basic syntax of finally block is:

try {

 //code

}

catch (ExceptionType1 e1) {

https://www.programiz.com/java-programming/online-compiler

 // catch block

}

finally {

 // finally block always executes

}

If an exception occurs, the finally block is executed after the try...catch block.

Otherwise, it is executed after the try block. For each try block, there can be only

one finally block.

Example: Java Exception Handling using finally block

class Main {

 public static void main(String[] args) {

 try {

 // code that generates exception

 int divideByZero = 5 / 0;

 }

 catch (ArithmeticException e) {

 System.out.println("ArithmeticException => " + e.getMessage());

 }

 finally {

 System.out.println("This is the finally block");

 }

 }

}

Run Code

Output

ArithmeticException => / by zero

This is the finally block

In the above example, we are dividing a number by 0 inside the try block. Here,

this code generates an ArithmeticException.

The exception is caught by the catch block. And, then the finally block is

executed.

Note: It is a good practice to use the finally block. It is because it can include

important cleanup codes like,

 code that might be accidentally skipped by return, continue or break

 closing a file or connection

3. Java throw and throws keyword

The Java throw keyword is used to explicitly throw a single exception.

When we throw an exception, the flow of the program moves from the try block

to the catch block.

Example: Exception handling using Java throw

class Main {

 public static void divideByZero() {

 // throw an exception

https://www.programiz.com/java-programming/online-compiler

 throw new ArithmeticException("Trying to divide by 0");

 }

 public static void main(String[] args) {

 divideByZero();

 }

}

Run Code

Output

Exception in thread "main" java.lang.ArithmeticException: Trying to divide by 0

 at Main.divideByZero(Main.java:5)

 at Main.main(Main.java:9)

In the above example, we are explicitly throwing the ArithmeticException using

the throw keyword.

Similarly, the throws keyword is used to declare the type of exceptions that might

occur within the method. It is used in the method declaration.

Example: Java throws keyword

import java.io.*;

class Main {

 // declareing the type of exception

 public static void findFile() throws IOException {

 // code that may generate IOException

 File newFile = new File("test.txt");

 FileInputStream stream = new FileInputStream(newFile);

 }

https://www.programiz.com/java-programming/online-compiler

 public static void main(String[] args) {

 try {

 findFile();

 }

 catch (IOException e) {

 System.out.println(e);

 }

 }

}

Run Code

Output

java.io.FileNotFoundException: test.txt (The system cannot find the file

specified)

When we run this program, if the file test.txt does not

exist, FileInputStream throws a FileNotFoundException which extends

the IOException class.

The findFile() method specifies that an IOException can be thrown.

The main() method calls this method and handles the exception if it is thrown.

If a method does not handle exceptions, the type of exceptions that may occur

within it must be specified in the throws clause.

https://www.programiz.com/java-programming/online-compiler

	Example: Java Class and Objects
	Java String
	CharSequence Interface
	What is String in Java?
	How to create a string object?
	1) String Literal
	Why Java uses the concept of String literal?
	2) By new keyword
	Java String Example

	Inheritance in Java
	Why use inheritance in java
	Terms used in Inheritance
	The syntax of Java Inheritance
	Types of inheritance in java
	Note: Multiple inheritance is not supported in Java through class.
	Example 1: Java Interface
	Single Inheritance:
	Multi-Level Inheritance:
	4.3 Multiple Inheritance:
	4.4 Hierarchical Inheritance:
	4.5 Hybrid Inheritance:

	Java Exception Handling
	1. Java try...catch block
	Example: Exception handling using try...catch

	2. Java finally block
	Example: Java Exception Handling using finally block

	3. Java throw and throws keyword
	Example: Exception handling using Java throw
	Example: Java throws keyword

	Structure of Java Program
	Documentation Section
	Package Declaration
	Import Statements
	Interface Section
	Class Definition
	Class Variables and Constants
	Main Method Class
	What is an interface in Java?
	What is the use of interface in Java?
	Example of an Interface in Java

	Java Exception Handling (1)
	1. Java try...catch block
	Example: Exception handling using try...catch

	2. Java finally block
	Example: Java Exception Handling using finally block

	3. Java throw and throws keyword
	Example: Exception handling using Java throw
	Example: Java throws keyword

